8 research outputs found

    Provenance-based trust for grid computing: Position Paper

    No full text
    Current evolutions of Internet technology such as Web Services, ebXML, peer-to-peer and Grid computing all point to the development of large-scale open networks of diverse computing systems interacting with one another to perform tasks. Grid systems (and Web Services) are exemplary in this respect and are perhaps some of the first large-scale open computing systems to see widespread use - making them an important testing ground for problems in trust management which are likely to arise. From this perspective, today's grid architectures suffer from limitations, such as lack of a mechanism to trace results and lack of infrastructure to build up trust networks. These are important concerns in open grids, in which "community resources" are owned and managed by multiple stakeholders, and are dynamically organised in virtual organisations. Provenance enables users to trace how a particular result has been arrived at by identifying the individual services and the aggregation of services that produced such a particular output. Against this background, we present a research agenda to design, conceive and implement an industrial-strength open provenance architecture for grid systems. We motivate its use with three complex grid applications, namely aerospace engineering, organ transplant management and bioinformatics. Industrial-strength provenance support includes a scalable and secure architecture, an open proposal for standardising the protocols and data structures, a set of tools for configuring and using the provenance architecture, an open source reference implementation, and a deployment and validation in industrial context. The provision of such facilities will enrich grid capabilities by including new functionalities required for solving complex problems such as provenance data to provide complete audit trails of process execution and third-party analysis and auditing. As a result, we anticipate that a larger uptake of grid technology is likely to occur, since unprecedented possibilities will be offered to users and will give them a competitive edge

    A Landscape of Pharmacogenomic Interactions in Cancer.

    Get PDF
    Systematic studies of cancer genomes have provided unprecedented insights into the molecular nature of cancer. Using this information to guide the development and application of therapies in the clinic is challenging. Here, we report how cancer-driven alterations identified in 11,289 tumors from 29 tissues (integrating somatic mutations, copy number alterations, DNA methylation, and gene expression) can be mapped onto 1,001 molecularly annotated human cancer cell lines and correlated with sensitivity to 265 drugs. We find that cell lines faithfully recapitulate oncogenic alterations identified in tumors, find that many of these associate with drug sensitivity/resistance, and highlight the importance of tissue lineage in mediating drug response. Logic-based modeling uncovers combinations of alterations that sensitize to drugs, while machine learning demonstrates the relative importance of different data types in predicting drug response. Our analysis and datasets are rich resources to link genotypes with cellular phenotypes and to identify therapeutic options for selected cancer sub-populations.This work was funded by the Wellcome Trust (086375 and 102696). F.I. was supported by the European Bioinformatics Institute and Wellcome Trust Sanger Institute post-doctoral (ESPOD) program. T.A.K. was supported by the National Cancer Institute (U24CA143835) and the Netherlands Organization for Scientific Research. D.T. was supported by the People Programme (Marie Curie Actions) of the 7th Framework Programme of the European Union (FP7/2007-2013; 600388) and the Agency of Competitiveness for Companies of the Government of Catalonia (ACCIO´ ). N.L.-B. was supported by La Fundacio ´ la Marato´ de TV3. M.E. was funded by the European Research Council (268626), the Ministerio de Ciencia e Innovacion (SAF2011-22803), the Institute of Health Carlos III (ISCIII) under the Integrated Project of Excellence (PIE13/00022), the Spanish Cancer Research Network (RD12/0036/0039), the Health and Science Departments of the Catalan Government Generalitat de Catalunya 2014-SGR 633, and the Cellex Foundation. U.M. was supported by a Cancer Research UK Clinician Scientist Fellowship. We thank Aiqing He for expression data and Ilya Shmulevich for assistance with the LOBICO framework. We thank P. Campbell, M. Ranzani, J. Brammeld, M. Petljak, F. Behan, C. Alsinet Armengol, H. Francies, V. Grinkevich, and A. ‘‘Lilla’’ Mupo for useful comments. P.R.-M., H.C., and H.d.S. are employees and shareholders of Bristol-Myers Squibb. Research in the M.J.G. lab is supported in part with funding from AstraZeneca

    Systematic identification of genomic markers of drug sensitivity in cancer cells.

    Get PDF
    Clinical responses to anticancer therapies are often restricted to a subset of patients. In some cases, mutated cancer genes are potent biomarkers for responses to targeted agents. Here, to uncover new biomarkers of sensitivity and resistance to cancer therapeutics, we screened a panel of several hundred cancer cell lines--which represent much of the tissue-type and genetic diversity of human cancers--with 130 drugs under clinical and preclinical investigation. In aggregate, we found that mutated cancer genes were associated with cellular response to most currently available cancer drugs. Classic oncogene addiction paradigms were modified by additional tissue-specific or expression biomarkers, and some frequently mutated genes were associated with sensitivity to a broad range of therapeutic agents. Unexpected relationships were revealed, including the marked sensitivity of Ewing's sarcoma cells harbouring the EWS (also known as EWSR1)-FLI1 gene translocation to poly(ADP-ribose) polymerase (PARP) inhibitors. By linking drug activity to the functional complexity of cancer genomes, systematic pharmacogenomic profiling in cancer cell lines provides a powerful biomarker discovery platform to guide rational cancer therapeutic strategies
    corecore